Aliphatic Semidiones. XXVII. Radical Anions Derived from Bicyclo[4.n.0]alk-3-ene-2,5-diones ${ }^{1}$

Glen A. Russell,* John R. Dodd, ${ }^{2}$ Thomas Ku, Charles Tanger, ${ }^{\mathbf{3}}$ and C. S. C. Chung
Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50010. Received June 4, 1974

Abstract

Hyperfine splitting constants have been assigned to the 2,5 -semidiones (radical anions of Δ^{3} - 2,5 -diones) in the bicyclo[4.1.0]heptane, bicyclo[4.2.0]octane, and bicyclo[4.2.0]oct-7-ene series and to the p-benzosemiquinones derived from benzocyclobutenes. INDO and EH-SCF calculations for the parent semidiones are reported as a function of geometry. Evidence for a dynamic valence isomerization involving a $95: 5$ ratio of anti -7 -methyl- and syn-7-methylbicyclo[4.1.0]heptane2,5 -semidione and an undetected monocyclic cycloheptatriene derivative is presented. Bicyclo[4.2.0]oct-7-ene-2,5-semidiones gave no evidence of isomerizing to the monocyclic cyclooctatraene derivatives. Treatment of bicyclo[4.2.0]octane- or bicyclo[4.2.0]oct-7-ene-2,5-semidiones with excess oxygen formed p-semiquinones of benzocyclobutene.

Valence isomerization may potentially occur in numerous unsaturated molecules, including the well-known examples illustrated in Chart I. In the case of the norcaradiene (1)cycloheptatriene (2) system, the equilibrium lies far to the right since norcardiene cannot be detected in cycloheptatriene (tropilidene) by spectral methods. ${ }^{4}$ Similarly the equilibrium for the bicyclo[4.2.0]octa-2,4,7-triene (3)-cyclooctatetraene (4) system lies far to the right as shown in Chart I; in this case, however, the isomerization of $\mathbf{3}$ to $\mathbf{4}$ is quenched at -78° and 3 is stable if prepared and stored at low temperatures. ${ }^{5}$ The bicyclo[4.2.0]octa-2,4-diene (5)-1,3,5-cyclooctatriene (6) valence isomerization proceeds

Chart I

Scheme I

only at temperatures above 80°, and thus both pure 5 and 6 can be separately isolated at room temperature. ${ }^{6}$

Valence isomerization is also known to occur in some enolate anions. Treatment of eucarvone (7), for example, with sodium amide followed by the addition of methyl iodide affords the bicyclic ketone 8 . ${ }^{7}$

Chart II

9
10

14S
a, $R_{1}=R_{2}=R_{3}=H$
b, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}$;
$\mathrm{R}_{3}=\mathrm{H}$
c, $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{CH}_{3}$;
$\mathrm{R}_{2}=\mathrm{H}$

13

15

17
12

16

We have demonstrated the occurrence of valence isomerization in the processes summarized in Scheme I. ${ }^{8,9}$ The spontaneous formation of semidiones from hydroxy ketones in basic solution is well known ${ }^{10}$ as well as the ability of basic DMSO solutions to reduce by one electron a variety of unsaturated ketones. ${ }^{11}$ From the results summarized in Scheme I, it is not possible to state at what oxidation stage (enolate anion, radical anion, dienolate dianion) valence isomerization occurred. The present work was initiated in hopes of obtaining evidence for valence isomerization at the radical anion stage for 1,4 -semidiones related to the, nor-caradiene-cycloheptatriene system as well as the cycloocta-triene-bicyclo[4.2.0]octa-2,4-diene analogs (Chart II).

Results and Discussion

Synthesis. Diones of structure 9 and 13 were synthesized by addition of diphenylsulfonium ylides to the benzoqui-none-cyclopentadiene Diels-Alder adduct ${ }^{12}$ followed by pyrolysis (Scheme II). The semidiones were synthesized ei-

Scheme II

ther by electrolytic reduction of the diones or by reduction with base in DMSO. ${ }^{11}$ Semidiones 15 and 17 were synthesized from the saturated 1,4 -diones by oxidation in basic so-
lution, a process for which there are numerous other examples. ${ }^{9,13}$ Diones 14a-c were synthesized according to Scheme III from the monoethylene ketal of cyclohex-2-ene-1,4-dione (20). ${ }^{14}$

Esr Spectra of Bicyclo[4.1.0]hepta-2,5-semidiones. Figure 1 gives the esr spectra of bicyclo[4.1.0]hepta-2,5-semidione and its syn- and anti-7-methyl derivatives generated at 25° by in situ electrolytic reduction in DMF of the bicy-clo[4.1.0]hept-3-ene-2,5-diones. The assignment of hyperfine splitting constants (hfsc) for these semidiones and others previously reported ${ }^{8}$ gives a consistent picture (Chart 1II).
Chart III

27a $\mathrm{R}_{1}-\mathrm{R}_{7}=\mathrm{H} ; a^{\mathrm{H}}=5.48(\mathrm{H}-3,4), 3.01(\mathrm{H}-1,6), 1.65(\mathrm{H}-7 \mathrm{a}), 0.75$ ($\mathrm{H}-7 \mathrm{~s}$) G
b $\mathrm{R}_{1}-\mathrm{R}_{6}=\mathrm{H}, \mathrm{R}_{7 \mathrm{a}}=\mathrm{H}, \mathrm{R}_{75}=\mathrm{CH}_{3} ; a^{\mathrm{H}}=5.50^{\circ}(\mathrm{H}-3,4), 3.12(\mathrm{H}-$ 1,6), 1.45 ($\mathrm{H}-7 \mathrm{a}$) G
c $\mathrm{R}_{1}-\mathrm{R}_{6}=\mathrm{H}, \mathrm{R}_{7 \mathrm{~s}}=\mathrm{H}, \mathrm{R}_{7 \mathrm{a}}=\mathrm{CH}_{3} ; a^{\mathrm{H}}=5.54(\mathrm{H}-3,4), 3.01(\mathrm{H}-$ $1,6), 0.88(\mathrm{H}-7 \mathrm{~s}), 0.88\left(\mathrm{CH}_{3}\right) \mathrm{G}$
d $\mathrm{R}_{1}-\mathrm{R}_{6}=\mathrm{CH}_{3}, \mathrm{R}_{7}=\mathrm{H} ; a^{\mathrm{H}}=5.20\left(\mathrm{CH}_{3}, \mathrm{C}-3,4\right), 0.25\left(\mathrm{CH}_{3}, \mathrm{C}-\right.$ 1,6), 1.95 (H-7a), 0.87 (H-7s) G
e $\mathrm{R}_{1}, \mathrm{R}_{3}=t \cdot \mathrm{Bu}, \mathrm{R}_{4}-\mathrm{R}_{7}=\mathrm{H} ; a^{\mathrm{H}}=4.90(\mathrm{H}-4), 2.40(\mathrm{H}-6), 1.40$ ($\mathrm{H}-7 \mathrm{a}$), 0.90 ($\mathrm{H}-7 \mathrm{~s}$), 0.20 (6 or 9 hydrogens) G
f $\mathrm{R}_{1}, \mathrm{R}_{4}, \mathrm{R}_{6}=\mathrm{H}, \mathrm{R}_{3}, \mathrm{R}_{7}=\mathrm{CH}_{3} ; a^{\mathrm{H}}=4.95\left(\mathrm{CH}_{3}, \mathrm{C}-3\right), 4.68(\mathrm{H}-4)$, $3.45,3.15(\mathrm{H}-1,6), 0.82\left(\mathrm{CH}_{3}-7 \mathrm{a}\right) \mathrm{G}$
g $\mathrm{R}_{1}=\mathrm{D}, \mathrm{R}_{4}, \mathrm{R}_{6}=\mathrm{H}, \mathrm{R}_{3}, \mathrm{R}_{7}=\mathrm{CH}_{3} ; a^{\mathrm{D}}=0.52(\mathrm{D}-1) ; a^{+1}=4.95$ $\left(\mathrm{CH}_{3}, \mathrm{C}-3\right), 4.68(\mathrm{H}-4), 3.15(\mathrm{H}-6), 0.82\left(\mathrm{CH}_{3}-7 \mathrm{a}\right) \mathrm{G}$
h $\mathrm{R}_{1}, \mathrm{R}_{6}=\mathrm{D}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{7 \mathrm{~s}}=\mathrm{H}, \mathrm{R}_{7 \mathrm{a}}=\mathrm{CH}_{3} ; a^{\mathrm{D}}=0.48(\mathrm{D}-1,6)$; $a^{\mathrm{H}}=5.54(\mathrm{H}-3.4), 0.88\left(\mathrm{H}-7 \mathrm{~s}: \mathrm{CH}_{3}\right.$, anti-C-7) G
i $\mathrm{R}_{1}-\mathrm{R}_{6}=\mathrm{H}, \mathrm{R}_{7}=\mathrm{CH}_{3} ; a^{\mathrm{H}}=5.4(\mathrm{H}-3,4), 3.2(\mathrm{H}-1,6), 0.83$ $\left(\mathrm{CH}_{3}\right.$, anti-C-7) G
j $\mathrm{R}_{3}-\mathrm{R}_{4}=$ benzo, $\mathrm{R}_{1}, \mathrm{R}_{6}, \mathrm{R}_{7}=\mathrm{H} ; a^{\mathrm{H}}=3.20(\mathrm{H}-1,6), 1.64(\mathrm{H}-7 \mathrm{a})$, $0.86(\mathrm{H}-7 \mathrm{~s}), 1.28(\mathrm{H}-o), 0.10(\mathrm{H}-\mathrm{m}) \mathrm{G}$

The hfsc's in this system have sufficient constancy so that tricyclic structures can be excluded and bicyclic structures (28B, 29B) can be assigned to the semidiones formed by re-

Scheme III

Table I. Hyperfine Splitting Constants Calculated for 27a ${ }^{a}$

Position	EH	INDO	EH	INDO	EH	INDO	Expt	
1,6	1.77	0.18	2.21	0.10	2.85	0.77	$13.00{ }^{\text {i }}$	
3,4	-4.80^{6}	-3.54	$-4.74{ }^{6}$	-3.49	-4.89^{6}	-3.71	\|5.48	
7 a	0	-0.78	0	-0.79	0	-0.47	[1.65	
7 s	0	-0.78	0	-1.65	0	-1.18	10.75	

${ }^{a} d(\mathrm{C}-2-\mathrm{C}-3)=d(\mathrm{C}-4-\mathrm{C}-5)=1.42, d(\mathrm{C}-3-\mathrm{C}-4)=1.38 \AA$, all other $d(\mathrm{C}-\mathrm{C})=1.54, d(\mathrm{C}-\mathrm{H})=1.09$, and $d(\mathrm{C}-\mathrm{O})=1.22 \mathrm{~A}$. all hydrogen atoms are positioned so that all $\mathrm{H}-\mathrm{C}-\mathrm{C}$ angles are equal for a given carbon atom. ${ }^{6} a^{\mathrm{H}}=-2 \mu_{\rho\left(3,4^{3}\right.}$.
duction of diones 28 and 29 by propiophenone enolate anion in DMSO at 25° (Scheme IV). ${ }^{8,15}$

Scheme IV

Eucarvone or the isomeric 1,1,4-trimethylcyclohepta2,4 -dien-6-one both yielded upon oxidation the bicyclic semidione 27f (Scheme I) which was also observed as the reduction product of $\Delta^{3}-2,5$-carenedione in basic DMSO or from oxidation of either Δ^{3}-2-hydroxycaren-5-one or 2,6,6-trimethylcyclohept-2-ene-1,4-dione in basic DMSO. Oxidation of 6,6-dimethylcyclohept-2-ene-1,4-dione in basic DMSO- d_{6} gave the bicyclic semidione 27i. When prepared by reduction of $\Delta^{3}-2,5$-carenedione or by the immediate oxidation of eucarvone in basic DMSO- d_{6}, no deuterium incorporation was observed in 27f. However, when the eucarvone was allowed to undergo hydrogen-deuterium exchange before oxidation, the monodeuterated semidione 27 g was observed. The syn-7-methylbicyclo[4.1.0]hept-3-ene-2,5dione in basic DMSO- d_{6} gave immediately 27h in which both bridgehead hydrogens had been exchanged while conditions which yield the monocyclic 2,6,6-trimethylcyclohep-tane-1,4-semidione (Scheme I) have been observed in DMSO- d_{6} to yield the 3,5,5,7,7-pentadeuterio derivative. ${ }^{9}$

The esr hfsc's observed for semidiones derived from bicy-clo[4.1.0]hept-3-ene-2,5-dione seem reasonable in terms of MO calculations. The but-2-ene-1,4-dione radical anion has a calculated spin density at (C-2,3) of 0.2018 (Hückel), 0.2085 (McLachlan). ${ }^{16}$ Using the standard value of $Q_{\mathrm{CH}^{\mathrm{H}}}{ }^{\mathrm{H}}$ $=-24 \mathrm{G}$ leads to predicted values of $a_{3,4} \mathrm{H}$ of $4.84-5.00 \mathrm{G}$ (observed, 4.7-5.9 G) for 27. Extended Hückel SCF calculations ${ }^{17}$ gave good agreement with a^{H} for $\mathrm{H}-1,3,4,6$ for 27a (Table I) but predict no hfs for $\mathrm{H}_{7 \mathrm{a}}$ or $\mathrm{H}_{7 \mathrm{~s}}{ }^{18}$ INDO calculations ${ }^{19}$ with the same geometry gave good agreement with the experimental values of a^{H} for $\mathrm{H}-3,4,7 \mathrm{a}$ and 7 s but rather poor agreement for $\mathrm{H}-1,6$ (Table I).

The signs of $a_{7}{ }^{\mathrm{H}}$ calculated by the INDO approximation are in agreement with out previous analysis of this interaction. ${ }^{8}$ Since the methylene group is in a nodal plane of the π-system, spin delocalization with electron transfer cannot be involved ${ }^{18}$ and introduction of the electron spin into the

Figure 1. First derivative esr spectra of bicyclo[4.1.0] hepta-2,5-semidiones: (a) the unsubstituted system (27a), (b) anti-7-methyl substit uent (27c), (c) syn-7-methyl substituent (27b). Mixtures of (b) and (c) contain resolved lines for (c) at only the three positions indicated by dotted vertical lines.
σ-framework by spin polarization without electron transfer is required (31). ${ }^{8}$

$a^{11}=0.75 \mathrm{G} . \mathrm{R}=\mathrm{H}$
$a \mathrm{H}=1.6 \overline{\mathrm{~g}} \mathrm{G} . \mathrm{R}=\mathrm{H}$
$a^{n}=0.88 \mathrm{G} \cdot \mathrm{R}=\mathrm{CH}_{3}$
$a^{\prime \prime}=1.45 \mathrm{G} . \mathrm{R}=\mathrm{CH}$
This should be contrasted to systems such as bicyclo[2.2.1]heptanesemidione (34) where the methylene groups at C-7 (or C-5,6) are not in a node of the spin label and electron transfer by delocalization (homohyperconjugation) occurs to the anti hydrogen at $\mathrm{C}-7$ (35) or the exo hydrogen atoms at C-5,6 (33). ${ }^{20.21}$ As shown in the structures this spin transfer mechanism is impeded by methyl substitution at the backside of the carbon-hydrogen bond involved (syn at C-7, endo at C-5,6). Structures $\mathbf{3 1}$ and $\mathbf{3 2}$ do not involve

backside bonding. Thus, methyl substitution at the syn C-7 position does not affect the spin polarization-hyperconjugation interaction in 32. When the geometry and nodal properties allow both mechanisms to compete it should be observed that methyl substitution in the syn (C-7) position will make $a_{\text {anti }}{ }^{\mathrm{H}}$ less positive and will result in a decrease in magnitude of a^{H} when a^{H} is positive (homohyperconjugation predominant) but an increase in magnitude of a^{H} when a^{H} is negative (spin polarization predominant).

Although the stereoselectivity of the interaction (hyperconjugation) is low for the hydrogen atoms in the 7 -position in 27, the interaction is quite stereoselective for methyl groups at C-7. The anti-7-methyl group interacts much more strongly than the syn-7-methyl group. Once the spin is introduced into the σ system by spin polarization (30) a favorable transoid coplanar (W-plan) arrangement of bonds exists between the spin polarized carbon orbital and the anti-7-methyl substituent (36) allowing a backside homoconjugative interaction ${ }^{21}$ to occur.

36
The observed hfsc for the syn and anti hydrogen atoms at $\mathrm{C}-7$ and for the anti-7-methyl group in 27 can serve as a model for dissecting hfsc in systems where both spin polarization and spin delocalization can occur. The relative magnitudes of the interactions in this system where spin delocalization is not involved are syn-7-H (~ 1), anti-7-H (~ 2), syn-7-CH3 (~ 0), and anti- $7-\mathrm{CH}_{3}(\sim 1)$.

Valence Isomerization in Bicyclo[4.1.0]hepta-2,5-semidiones. The independent existence of syn- and anti-7-methyl derivatives ($\mathbf{2 7 b}, \mathbf{c}$) would appear to exclude the valence isomerizations $\mathbf{1 0} \rightleftarrows \mathbf{1 1} \rightleftarrows \mathbf{1 2}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ from further consideration. However, when either 9 or 13 was treated with potassium tert-butoxide in DMSO the same mixture of $\sim 5 \%$ of $10(=\mathbf{2 7 b})$ and $\sim 95 \%$ of $\mathbf{1 2 (= 2 7 c) ~ w a s ~ i m m e d i a t e - ~}$ ly observed. This observation requires that either the radical ions or the dianions ($\mathbf{9 2}^{-}, 13^{\mathbf{2 -}}$) or the enolate dianions have interconverted. Evidence for ionization of bridgehead protons to give enolate anions was furnished by the observation that in DMSO- $d_{6} 13\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ gave semidione $\mathbf{2 7 h}$ with deuterium atoms at C-1,6 (the expected $\sim 5 \%$ of the syn-7. methyl iosmer could not be detected because of the complexity of the esr spectrum of $\mathbf{2 7 h}$). This result is somewhat surprising because when 4,7,7-trideuterioeucarvone was oxidized in basic DMSO- d_{6} only a monodeuterio semidione $(27 \mathrm{~g})$ was detected while from Δ^{3}-carene-2,5-dione the undeuterated semidione was observed (Scheme V). It appears that the exo-7-methyl substituent in $\mathbf{2 7 f}$ or $\mathbf{2 7 g}$ hinders hy-drogen-deuterium exchange at $\mathrm{C}-1$ and $\mathrm{C}-6$, presumably by a steric effect. Other examples of steric hindrance to ionization by substituents have been reported for bicyclic semidiones in the [3.1.0] hexane system. ${ }^{18}$

Scheme V

$27 f$

Direct evidence for the interconversion of $\mathbf{1 0}$ or $\mathbf{1 2}$ to $\mathbf{1 1}$ is not provided by either the electrolytic reduction or the chemical reduction by base in DMSO. However, a slow interconversion of $\mathbf{1 0} \rightleftarrows \mathbf{1 1} \rightleftharpoons \mathbf{1 2}$ is not excluded by either of these results because an analysis of the system cannot be made without also considering the equilibria $9 \rightleftharpoons 10$ and $\mathbf{1 2}$ $\rightleftarrows 13$ (or the equivalent $10+13 \rightleftarrows 12+9$). In fact, when a mixture of $90 \% \mathbf{1 3}$ (anti-methyl) and 10% of 9 (syn-methyl) was reduced electrolytically in DMF in the absence of base, an intense esr signal of only the syn-semidione (10) was detected during the electrolysis. Thus the syn-7-methyl dione (9) is much more easily reduced than the anti-7. methyl dione (10). We thus turned our attention to the effect of time and the extent of reduction on the esr signals observed from 9 and 13. The anti-7-methyl dione in DMF gave during electrolysis a strong esr signal of the anti-semidione free of the syn isomer. Upon cessation of electrolysis the strength of the esr signal decreased and the esr spectrum of the syn-semidione appeared so that after 15 min the ratio of anti:syn semidiones was $c a .96: 4$. When the syndione was reduced electrolytically (to a small extent) and the reduction halted, no trace of the anti isomer could be found over the period of 1 hr that the esr spectrum could be detected. When the syn-dione was completely or nearly completely reduced electrolytically over a period of 30 min , the final esr spectrum was clearly that of the anti-semidione with a few per cent of the cis isomer. These results are all nicely correlated if the valence isomerization $10 \rightleftharpoons \mathbf{1 1} \rightleftharpoons$ 12 is allowed together with rapid electron transfer between diones and semidiones. In the presence of excess syn-7methydione any of the anti-7-methylsemidione formed by valence isomerization would yield by electron transfer the syn-7-methylsemidione (Scheme VI). Thus, the anti-7methylsemidione can be observed only when the concentration of the syn-7-methyldione is very low. The reactions of Scheme VI provide a mechanism for the isomerization of 9 to 13 once some of the semidione has been formed. However, the rate of $\mathbf{1 0} \rightleftarrows \mathbf{1 2}$ appears to be slow as evidenced by the observation that when 12 is being formed rapidly by electrolysis of 13, $\mathbf{1 0}$ cannot be detected and can be seen only after the electrolytic reduction has been halted. Since semidiones are in equilibrium with diones and their dianions, it is also possible that the syn-anti interconversion may involve the latter species, i.e., $\mathbf{1 0}^{\mathbf{2 -}} \rightleftarrows \mathbf{1 2}^{\mathbf{2}}$.

Scheme VI

Esr Spectra of Bicyclo[4.2.0]octa-2,5-semidiones. Figure 2 gives the esr spectra of bicyclo[4.2.0]octa- 2,5 -semidione (37a) and the syn,anti-7,8-dimethyl (37b) derivative in DMSO solution. The semidiones were prepared by oxidation of the saturated 1,4-diones in basic DMSO solution or DMSO- $d_{6}(37 \mathrm{c})$. The assignment of the hfsc gives a consistent picture (Chart IV) for a cis ring fusion in the bicyclic semidione.

Chart IV

$\mathbf{3 7 a}, \mathrm{R}_{7}=\mathrm{R}_{8}=\mathrm{H} ; a^{\mathrm{H}}=5.85(\mathrm{H}-3,4), 3.48(\mathrm{H}-1,6), 0.32(2), 0.18$ (2) G
b, $\mathrm{R}_{7 \mathrm{~s}}=\mathrm{R}_{8 \mathrm{a}}=\mathrm{H}, \mathrm{R}_{7 \mathrm{a}}=\mathrm{R}_{8 \mathrm{~s}}=\mathrm{CH}_{3} ; a^{\mathrm{H}}=5.85(\mathrm{H}-3,4), 4.60(\mathrm{H}-1$ or H-6), 2.60 (H-6 or H-1), 0.39 (1), 0.25 (1) G
c, $\mathrm{H}-1,3,4,6=\mathrm{D}, \mathrm{R}_{7 \mathrm{~s}}=\mathrm{R}_{8 \mathrm{a}}=\mathrm{H}, \mathrm{R}_{7 \mathrm{a}}=\mathrm{R}_{8 \mathrm{~s}}=\mathrm{CH}_{3} ; a^{\mathrm{D}}=0.87$ (D3,4), $0.69(\mathrm{D}-1$ or $\mathrm{D}-6), 0.39(\mathrm{D}-6$ or $\mathrm{D}-1) ; a^{\mathrm{H}}=0.39$ (1) 0.25 (1) G
d, cis-7,8-dimethyl; $a^{\mathrm{H}}=5.90(\mathrm{H}-3,4), 3.75(\mathrm{H}-1,6), 0.32(2) \mathrm{G}$
The hfs of hydrogen atoms in the ethano bridge of $\mathbf{3 7 a}$ are difficult to assign without a knowledge of the sign of a^{H}. INDO calculations (Table II) indicate that $a_{7 \mathrm{a}, 8 \mathrm{a}} \mathrm{H}$ is positive and greater than $a_{7 \mathrm{~s}, 8 \mathrm{~s}}{ }^{\mathrm{H}}$. The absence of hfs by the anti methyl group in 37b suggests that spin polarization and delocalization mechanisms at this position cancel each other as is the case for the anti-7-methyl group in 1,7,7-trimeth-ylbicyclo[2.2.1]heptane-2,3-semidione (38b). ${ }^{21}$

38a
($a \mathrm{H}$ in G)

(a^{H} in G) composite spectra of several methyl derivatives of $\mathbf{3 8 a}$

Figure 2. First derivative esr spectra of (a) bicyclo[4.2.0]octa-2,5-semidione and (b) syn.anti-7,8-dimethylbicyclo[4.2.0]octa-2,5-semidione in DMSO solution at 25°.

The hfs pattern observed for 37b completely excludes a trans ring fusion. The nonequivalence of bridgehead hydrogen atoms in 37b ($a{ }^{\mathrm{H}}=4.60,2.60 \mathrm{G}$) indicates that the $C(2)-C(1)-C(8)$ bond angle is larger than the $C(5)-$ $\mathrm{C}(6)-\mathrm{C}(7)$ angle (the syn methyl is at $\mathrm{C}-8$), an arrangement which allows the syn methyl group to move away from the six-membered ring to relieve steric interactions and which makes the $\mathrm{C}(1)-\mathrm{H}$ bond more parallel to the carbon p_{z}-orbital at C -2; i.e., $a_{\mathrm{I}} \mathrm{H}=4.6 \mathrm{G}$.

Two isomeric cis-7,8-dimethylbicyclo[4.2.0] octane-2,5diones (14b) were prepared (Scheme III). In view of the spectrum observed for $\mathbf{3 7 b}$, we expected a considerable difference between the esr spectra of the syn,syn- and an$t i$,anti-dimethylsemidiones. Dione $\mathbf{1 4 b}$ prepared by catalytic hydrogenation gave a single paramagnetic species (37d) upon oxygenation in basic DMSO (Figure 3a). The values of $a^{\mathrm{H}}=5.90(2), 3.75$ (2), and 0.32 (2) G are quite similar to the hfs reported for 37a, and it appears that the geometry at $\mathrm{C}-1$ and $\mathrm{C}-6$ is quite similar for 37 a and 37d. The other cis dione (from the photochemical addition of 2-butene, Scheme III) gave a mixture of radical anions when oxidized in basic solution. With time and further oxygenation the spectrum of Figure 3b resulted. In Figure 3b four lines due

Table II. INDO Calculated Hyperfine Splitting
Constants (G) for $37 \mathbf{a}^{a}$

Position	105*	111°	120°	Exptl
H-3,4	-4.29	-4.14	-4.50	5.85
H-1,6	-0.30	-0.45	-0.78	3.48
H-7a,8a	$+0.80$	+0.56	$+0.38$	0.32
H-7s, 8 s	-0.16	-0.03	$+0.07$	0.18

${ }^{0} d(\mathrm{C}-2-\mathrm{C}-3)=d(\mathrm{C}-4-\mathrm{C}-5)=1.42, d(\mathrm{C}-3-\mathrm{C}-4)=1.37 \AA$, all other $d(\mathrm{C}-\mathrm{C})=1.54, d(\mathrm{C}-\mathrm{H})=1.09$, and $d(\mathrm{C}-\mathrm{O})=1.22 \AA$. All hydrogen atoms are positioned so that all $\mathrm{H}-\mathrm{C}-\mathrm{C}$ angles were equal for a given carbon atom.

Figure 3. First derivative esr spectra of cis-7,8-dimethylbicyclo[4.2.0]ocla- 2.5 -semidione prepared by oxidizing the 1,4 -diones in basic DMSO solution: (a) dione prepared from 25 b , (b) dione prepared from 26.
to another radical anion are indicated by arrows, and it is seen that traces of this species are also present in spectrum 3a. Figures 3 a and 3 b are very similar except that the 0.32 G triplet is not resolved in 3 b . We conclude that there has been an isomerization of one of the systems at either the dione, semidione, or dianion stage. In basic solution enolization of the bridgehead hydrogen atoms occurs as evidenced by the formation of the tetradeuterio derivative 37 c in the trans dimethyl system in DMSO- d_{6}. Thus isomerization of one cis dimethyl species to the other could involve stepwise epimerization of the bridgehead positions with the intermediacy of a trans fused ring junction. It would seem that the most logical structure for $\mathbf{3 7 d}$ would be the anti, anti dimethyl structure ($37, \mathrm{R}_{7 \mathrm{~s}}=\mathrm{R}_{8 \mathrm{~s}}=\mathrm{H}, \mathrm{R}_{7 \mathrm{a}}=\mathrm{R}_{8 \mathrm{a}}=\mathrm{CH}_{3}$). If this is correct then in $\mathbf{3 7 a}$ the syn hydrogens at $\mathrm{C}-7,8$ must have the larger hfsc (0.32 G) and the anti the lowest hfsc (0.18 G). The possibility exists that there is a change in sign with the syn hydrogen having a negative a^{H} (from spin polarization) while the anti hydrogens have a more positive (either negative or positive in sign) value of $a \mathrm{H}$ resulting from the net effect of spin polarization and delocalization.

Quinone photodimers (Scheme VII) appeared to present interesting percursors to bicyclo[4.2.0]octane-2,5-semidiones. However, upon electrolytic reduction of the photodimer of 2,3-dimethylbenzoquinone ${ }^{22}$ in DMF, a mixture of radical anions was formed in which 2,3 -dimethyl- p-benzosemiquinone could be identified. Apparently this is another example ${ }^{9}$ wherein by addition of an electron to the LUMO a $2+2$ cycloaddition becomes thermally reversible.
p-Benzocyclobutene Semiquinones. Treatment of $\mathbf{3 7}$ with additional small amounts of oxygen produced 39 (Chart V). ${ }^{23}$ The parent system 39 a had a half-life of $\sim 5 \mathrm{~min}$ (from esr) whereas 39b and 39c had $t_{1 / 2} \sim 70 \mathrm{~min}$. The

Scheme VII

corresponding semiquinones of benzocyclopropene and benzocyclobutadiene were not detected upon overoxidation of 27 or 40a but direct evidence for benzocyclobutadiene formation will be presented.

Chart V

39a
39a, $\mathrm{R}_{\mathrm{i}}-\mathrm{R}_{3}=\mathrm{H} ; \boldsymbol{a}^{\mathrm{H}}=2.46$ (2), 1.93 (4) G
b. $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{H} ; a^{\mathrm{H}}=2.51$ (2), 1.77 (2) G
c. $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H} ; a^{\mathrm{H}}=2.51$ (2), 1.70 (2) G

The small value of $a_{\mathrm{CH}_{2}}{ }^{\mathrm{H}}$ observed for 39 a is in agreement with the observations previously made for the related cyclobuta $[b]$ naphthalene- 3,8 -semiquinone ${ }^{24}$ (see Chart VI). The observed value of $a_{\mathrm{CH}_{2}}{ }^{\mathrm{H}}=2.94 \mathrm{G}$ in this semiquinone was considerably less than the value of 4.7 G predicted from the Hückel spin density at $\mathrm{C}-1$ with a value of $Q=51$ G. ${ }^{24}$ The discrepancy was explained in terms of the influence of strain on the spin density distribution using Streitweiser's "hybridization effect model" 25 which makes the ring juncture carbon atoms of a strained ring less electronegative (a smaller Coulomb integral) and the carbon atom α more electronegative (a larger Coulomb integral). The same effect apparently applies to $\mathbf{3 9 a}$ to the same degree since the ratios of $a_{\mathrm{CH} 2}{ }^{\mathrm{H}} / a_{\mathrm{CH} 3}{ }^{\mathrm{H}}$ for the 2,3-ethano- and 2,3 -dimethyl- p-semiquinones are very similar in the benzene $(1.95 / 1.71=1.14)$ and naphthalene $(2.94 / 2.51=$ 1.16) series.

An alternate and probably preferable explanation of the low values of $a_{\mathrm{CH}_{2}}{ }^{\mathrm{H}}$ in 39 a and the naphthoquinone analog involves the increased importance of 1,3 overlap in the cyclobutane ring and the antisymmetric nature of the HOMO in these radical anions. ${ }^{21.26}$

Bicyclo[4.2.0]oct-7-ene-2,5-semidiones. Semidiones 40 and 41 constitute a pair of valence isomers (Chart VII). Oxidation of the 1,4 -diones 25a,b formed 40a,b in DMSO and the tetradeuterio derivative of $\mathbf{4 0 b}$ in DMSO- $d_{6}\left(a^{\mathrm{D}}=\right.$ 0.88 (2), 0.76 (2), $a^{\mathrm{H}}=0.14$ (6) G).

Electrolytic reductions or treatment with basic DMSO of substituted bicyclo[4.2.0]oct-3,7-diene-2,5-diones ${ }^{29}$ yielded 40c and 40d with hfsc in agreement to the assignment for $40 \mathrm{a}, \mathrm{b}$ and with no indication of a reversal of the $2+2$ photochemical cycloaddition reaction. In DMSO- $d_{6} 40 \mathrm{c}$ slowly exchanged the hydrogen atom with 4.61 G to give $a^{\mathrm{D}}=$ 0.70 G .

Chart VI. a^{H} in $\mathrm{G}^{27,28}$

Chart VII

a, $\mathrm{R}_{1}-\mathrm{R}_{3}=\mathrm{H} ; a^{\mathrm{H}}=5.58$ (2), 5.08 (2), 0.44 (2) G
b. $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{H} ; a^{\mathrm{H}}=5.75$ (2), 5.10 (2), 0.14 (6) G
c, $\mathrm{R}_{\mathrm{t}}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{3}=\mathrm{CH}_{3} \mathrm{O} ; a^{\mathrm{H}}=5.62,5.13,4.61,0.22 \mathrm{G}$
d, $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{3}=\mathrm{CH}_{3} \mathrm{O}$;

$$
a^{\mathrm{H}}=5.63,5.10,4.70,0.49 \text { (3) G }
$$

The magnitudes of $a_{\mathrm{CH}^{\mathrm{H}}}$ and $a_{\mathrm{CH}_{3}}{ }^{\mathrm{H}}$ for $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$ or CH_{3} as well as the magnitude of $a_{\mathrm{CH}}{ }^{\mathrm{H}}$ at the bridgehead positions supports the bicyclic structures $\mathbf{4 0}$. Since the system has not yet been entered from a monocyclic precursor, it is impossible to state whether the isomerization of $\mathbf{4 1}$ to 40 will occur readily or if an equilibrium greatly favoring 40 over 41 exists.

In Table III are given the EH-SCF and INDO calculations for 40a. The INDO calculation again gives a poor pre-

diction for the α (bridgehead) positions. Direct spin transfer from the 1,4 -semidione spin label to the isolated double bond in 40a would not be expected because the HOMO's have different symmetries. ${ }^{21}$ Apparently either spin transfer by delocalization directly to hydrogen atoms $\mathrm{H}-7$ and $\mathrm{H}-8$ can occur (required by the EH treatment), or alternately, in the INDO treatment spin polarization without electron transfer can be involved, e.g., structures 42-44, wherein a negative electron spin density is introduced into the olefinic system by spin polarization (42) and conjugation (43). Although the symmetries of the HOMO's in the spin label and double bond are different, it is observed at C. 7,8 that $a_{\mathrm{CH}^{H}}$ (0.9 G for $40 \mathrm{a}, 0.23 \mathrm{G}$ for 40 c) $\approx a_{\mathrm{CCH}_{3}}{ }^{\mathrm{H}}(0.14 \mathrm{G}$ for 40 b , 0.43 G for 40 d) suggestive of unpaired spin density in the π-system since $-Q_{\mathrm{CH}^{\mathrm{H}}} \approx Q_{\mathrm{CCH}_{3}}{ }^{\mathrm{H}}$. Such an effect is consistent with $\mathbf{4 0} \leftrightarrow \mathbf{4 2}$. Over-oxidation of $\mathbf{4 0 a}$ or $\mathbf{4 0 b}$ pro-

Table III. Hyperfine Splitiing Constants Calculated by EH-SCF and INDO Methods for 40a ${ }^{\text {a }}$

Position					Exptl
	EH	INDO	EH	INDO	
H-3, H-4	-5.22	-3.83	-5.38	-3.71	5.581
H-1. H-6	+7.76	+17.1	+7.04	+1.41	15.08 \|
H-7. H-8	+0.69	+0.62	+0.78	$+1.12$	10.44

${ }^{a} d(\mathrm{C}-2-\mathrm{C}-3)=1.42, d(\mathrm{C}-3-\mathrm{C}-4)=1.37, d(\mathrm{C}-7-\mathrm{C}-8)=1.38 \AA$, all other $d(\mathrm{C}-\mathrm{C})=1.54, d(\mathrm{C}-\mathrm{H})=1.09, d(\mathrm{C}-\mathrm{O})=1.22 \AA$.
duced 39a and 39b, respectively. The cyclobutadiene intermediate $\mathbf{4 5}$ is implicated because the cis stereochemistry in

the resulting benzocyclobutene derivative 39b suggests that perhaps two hydrogen atoms (Scheme VIII) are transferred to 44 by some concerted process. ${ }^{30}$

Scheme VIII

A similar phenomenon was encountered in an examination of the benzo derivatives of 40, semidiones 46a-d (Chart VIII).

Chart VIII

46a, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$;
$a^{\mathrm{H}}=5.43$ (2), 2.48 (2) 0.24 (2), 0.21 (6) G
b, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{3}=\mathrm{H} ; a^{\mathrm{H}}=6.05$ (2), 2.33 (2) G
c. $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{3}=\mathrm{CH}_{3} \mathrm{O}$
d, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{3}=\mathrm{CH}_{3} \mathrm{O}$
Over-oxidation of $\mathbf{4 6 a}$ or $\mathbf{4 6 b}$ produced the isomerized p-naphthosemiquinones (47, Scheme IX). Semiquinones 47b-d were also produced from the methoxyquinones electrolytically in DMF or DMSO (Scheme IX). In DMSO- d_{6} the dideuterio derivative 47 c was formed. The elimination of methanol occurred so readily that the intermediate me-thoxy-1,4-semidiones (i.e., 46c,d) could not be detected. Without the benzo substituent the methoxysemidione was

$$
\begin{aligned}
47 \mathrm{a}, & \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3} ; a^{\mathrm{H}}=2.25(2), 0.52(2), 0.26(2), 0.13(6) \mathrm{G} \\
\mathrm{~b}, & \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5} ; a^{\mathrm{H}}=2.73(2), 0.70(2), 0.39(2) \mathrm{G} \\
\mathrm{c}, & \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5} ; a^{\mathrm{H}}=0.70(2), 0.35(2) ; a^{\mathrm{D}}=0.41(2) \mathrm{G} \\
\mathrm{~d}, & \mathrm{R}_{1}=H, \mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5} ; a^{\mathrm{H}}=2.99,2.78,2.65,0.72(2), 0.36(2) \mathrm{G}
\end{aligned}
$$

stable ($40 \mathrm{c}, \mathrm{d}$) and no evidence of elimination was found, even in basic DMSO solution.

Experimental Section

General Preparation of Semidiones. The general techniques for the reductions with potassium tert-butoxide in dimethyl sulfoxide were followed as previously described. ${ }^{10}$ Approximately 1-2 mg of a diketone in 0.5 ml of dry DMSO (distilled from calcium hydride) was placed in one side of an inverted U -cell l^{32} and potassium tertbutoxide (approximately 10 mg) was dissolved in 0.5 ml of dry DMSO in the other side. Both solutions were simultaneously deoxygenated with prepurified nitrogen for 15 min . The solutions were then mixed by inverting the cell, and the final solution was then shaken into a Varian Associates V-4548 aqueous solution sample cell.
The in situ electrolytic reductions were carried out in a flat cell with a mercury pool cathode and a platinum wire anode. Approximately $1-2 \mathrm{mg}$ of an unsaturated diketone was dissolved in 1 ml of dry dimethylformamide containing $0.1 M$ tetra- n-butylammonium perchlorate as the electrolyte. This solution was placed inside the electrolytic cell and degassed with a stream of prepurified nitrogen for 15 min prior to the beginning of the electrolysis. Each electrolysis was carried out at the minimum voltage necessary to result in the production of a strong esr signal.

General Preparation of Benzosemiquinones from Semidiones. Air was allowed to enter the U-cell containing the DMSO solution of the semidione by separating the ground glass joints of the U-cell and flat cell for brief periods ($5-10 \mathrm{sec}$). The solution was then shaken for $1-3 \mathrm{~min}$ and its esr spectrum was then monitored. The semidiones were completely converted to their corresponding semiquinones after this procedure had been repeated several times (in cases where a stable semiquinone resulted).

Complete Reduction of syn-7-Methylbicyclo[4.1.0]hept-3-ene$\mathbf{2 , 5}$-dione. The electrolysis was carried out in a specially constructed cell that had its anode and cathode compartments separated by a fine glass frit. A silver wire was used as the anode and a platinum wire as the cathode. Each wire was coiled and the coil was arranged in the shape of a circle such that the plane of the circle was parallel to the plane of the glass frit. The distance between the cathode and anode coils was 2 cm . The capacity of the anode compartment was approximately 2 ml and that of the cathode was approximately 3 ml . A portion of the contents of the cathode compartment could be drained through a stopcock into a flat cell which fitted into the esr cavity.

A solution of 1 mg of syn-7-methylbicyclo[4.1.0] hept-3-ene-2,5-dione was dissolved in 3 ml of dry dimethylformamide containing 54 mg of tetrabutylammonium iodide and placed in the cathode compartment. A solution of 36 mg of tetrabutylammonium iodide in 2 ml of dimethylformamide was placed in the anode compartment. These solutions were simultaneously degassed on a vacuum line in several freeze-thaw cycles. The electrolysis was carried out at the minimum negative voltage necessary to give the reddish brown color of the semidione forming at the surface of the cathode $(-4 \mathrm{~V})$. Initially the current was 0.5 mA but it dropped in value as the electrolysis proceeded and was nearly zero after 0.5 hr . The electrolysis was stopped at this point and a portion of the contents of the cathode was drained into the flat cell. The esr spectrum of this sample was then recorded in the normal fashion.
anti- and syn-12-Methyltetracyclo[4.4.0.13,4.17,10 $]$ dodec-8-ene-2,5-dione ($\mathbf{1 9}, \mathbf{R}=$ Methyl). A solution of 0.03 mol of diphenylsulfonium ethylide in 200 ml of dry 1,2 -dimethoxyethane (distilled from lithium aluminum hydride) was prepared under nitrogen at -77° according to the precedure of Corey and Jautelat. ${ }^{33}$ The ylide solution was warmed to -20° and a solution of 5.22 g (30 mmol) of tricyclo[4.4.0.17.10] undeca-3,8-diene-2,5-dione ${ }^{12}$ (18) in 20 ml of dry 1,2 -dimethoxyethane was added over 5 min to the rapidly stirred ylide solution. The intense yellow color of the ylide was discharged and the resulting solution turned blue near the end of the addition. The solution was stirred for 8 hr at -15 to -25° during which time the color changed to reddish brown.

The reaction mixture was poured into 500 ml of water and extracted with 600 ml of ether. The ether solution was washed with water ($4 \times 500 \mathrm{ml}$), dried over magnesium sulfate, and concentrated in vacuo affording 16.1 g of a brown oil.

The crude product was chromatographed on a $1 \times 18 \mathrm{in}$. column of silica gel ($60-200$ mesh) slurry-packed in 3% ether-hexane. Fractions of 250 ml were collected: fraction 1, 3\% ether-hexane, nil; $2,3 \%$ ether-hexane, 5.70 g of diphenyl sulfide; 3 and $4,6 \%$ ether-hexane, nil; 5 and 6, 12% ether-hexane, nil; $7,20 \%$ etherhexane, nil; 8 and $9,20 \%$ ether-hexane, 343 mg of an unidentified solid; 10 and $11,20 \%$ ether-hexane, 695 mg of an unidentified yellow oil; $12-22,2.27 \mathrm{~g}$ (35%) of a mixture of $s y n-$ and anti-12methyltetracyclo[4.4.0.1 $1^{3.4}, 1^{7,10}$]dodec-8-ene-2,5-dione. $\quad \mathrm{Nmr}$ analysis of the crude mixture showed that it contained 18% of the syn isomer and 82% of the anti isomer.

Crystallization of the mixture from ether-hexane afforded 1.16 g of pure anti-12-methyltetracyclo[4.4.0.1 ${ }^{3,4} .1^{7,10}$]dodec-8-ene-2,5-dione as white needles: mp 127-128 ${ }^{\circ}$; ir (KBr) 1686 and 1675 $(\mathrm{C}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.06(\mathrm{t}, 2, J=1.6 \mathrm{~Hz}), 3.49-3.25(\mathrm{~m}, 2)$, 3.25-3.07 (m, 2), 2.54-2.08 (m, $), 1.98(\mathrm{~d}, 2, J=4.8 \mathrm{~Hz}), 1.55-$ 1.07 and 1.26 (m and d, $5, J=5.6 \mathrm{~Hz}$); mass spectrum (70 eV) $m / e 202$ (parent ion). ${ }^{34}$
syn-12-Methyltetracyclo[4.4.0.1 ${ }^{3,4}, 1^{7,10}$]dodec-8-ene-2,5-dione was not isolated in pure form. The mother liquor from the above crystallization was evaporated to dryness, and the resulting material consisting of a mixture of syn- and anti-12-methyltetracyclo[4.4.0.1 ${ }^{3.4} \cdot 1^{7,10}$]dodec-8-ene-2,5-dione was used directly in the next step.
anti-7-Methylbicyclo[4.1.0]hept-3-ene-2,5-dione (13, $\mathrm{R}=$ methyl). A saturated solution containing 338 mg (1.67 mmol) of anti-12-methyltetracyclo[4.4.0.1 ${ }^{3,4} .1^{7,10}$]dodec-8-ene-2,5-dione in methylene chloride was injected in $50 \mu \mathrm{l}$ portions into a 0.25 in . \times 5 ft glpc column (15% DEGS, $200^{\circ}, 80 \mathrm{~cm}^{3} / \mathrm{min}$ flow) and the effluent yellow oil (217 mg) was collected. This material, which solidified upon scratching, was sublimed at $70^{\circ}(1 \mathrm{~mm})$ giving 200 mg (88%) of a pale yellow solid: $\mathrm{mp} 40.5-51^{\circ}$; ir $\left(\mathrm{CCl}_{4}\right) 1675$, $1687(\mathrm{C}=\mathrm{O})$, and $1601 \mathrm{~cm}^{-1}(\mathrm{D}=\mathrm{C})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) 6.44(\mathrm{~d}, 2, J$ $=0.8 \mathrm{~Hz}), 2.49-2.27(\mathrm{~m}, 2), 2.27-1.83(\mathrm{~m}, 1)$, and $1.33(\mathrm{~d}, 3, J=$ 5.5 Hz); mass spectrum (70 eV) m/e (rel intensity) 136 (8) (molecular ion), 121 (8), 108 (5). ${ }^{34}$
syn-7-Methylbicyclo[4.1.0]hept-3-ene-2,5-dione (9, $\mathrm{R}=$ methyl). A saturated solution containing $433 \mathrm{mg}(2.14 \mathrm{mmol})$ of anti- and syn-12-methyltetracyclo[4.4.0.1 ${ }^{3,4}$. $1^{7,10}$]dodec-8-ene-2,5-dione ($50: 50$ mixture by nmr) in methylene chloride was injected in $50-$ $\mu \mathrm{l}$ portions onto a 0.25 in . $\times 5 \mathrm{ft} \mathrm{glpc}$ column ($15 \% \mathrm{XF}-1150,195^{\circ}$, $150 \mathrm{~cm}^{3} / \mathrm{min}$ flow) and the effluent oil was collected (200 mg , 68%). Nmr analysis showed that the product consisted of a mixture of syn- and anti-bicyclo[4.1.0] hept-3-ene-2,5-dione (47 and 53%, respectively). The pure syn isomer (25 mg) was obtained by preparative glpc ($0.25 \mathrm{in} . \times 5 \mathrm{ft} 10 \% \mathrm{QF}-1$ column, $145^{\circ}, 75$
$\mathrm{cm}^{3} /$ min flow) in three passes. The retention times under these conditions were $11.5 \mathrm{~min}(\mathrm{syn})$ and 13.4 min (anti).
Pure syn-7-methylbicyclo[4.1.0]hept-3-ene-2,5-dione crystallized upon standing at room temperature affording a pale yellow solid: $\mathrm{mp} 60.0-60.5^{\circ}$; ir $\left(\mathrm{CCl}_{4}\right) 1676(\mathrm{C}=\mathrm{O})$ and $1602 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) 6.63$ (slightly split singlet, 2), 2.64-2.36)m, 2), 2.34-1.68 (m, 1), and $1.35(\mathrm{~d}, 3, J=5.7 \mathrm{~Hz})$; mass spectrum $(70 \mathrm{eV}) \mathrm{m} / \mathrm{e}$ (rel intensity) 136 (12) (molecular ion), 121 (17), 108 (13). ${ }^{34}$

Diphenylmethylsulfonium Tetrafluoroborate. The procedure of Franzen, et al., ${ }^{35}$ was followed affording (81%) of a clear oil.
Tetracyclo[4.4.0.1 $1^{1,4} .1^{7,10}$ dodec-8-ene-2,5-dione ($\mathbf{1 9}, \mathbf{R}=\mathbf{H}$). To a rapidly stirred suspension of diphenylmethylsulfonium tetrafluoroborate ($5.34 \mathrm{~g}, 18.5 \mathrm{mmol}$) in 175 ml of dry tetrahydrofuran (distilled from lithium aluminum hydride) under nitrogen at -72° was added 14.85 ml (18.0 mmol) of tert-butyllithium in pentane $(1.21 \mathrm{M})$ over 15 min . The resulting bright yellow solution was stirred for 0.5 hr . A solution of $\mathbf{1 8}$ in 12 ml of dry tetrahydrofuran was added over 5 min affording a blue solution. The solution was stirred at -72° for 21 hr and then at -30° for 3 hr . Water (3 ml) was slowly added at -30°. The reaction mixture was extracted with ether and the ether extract was washed with water and dried over magnesium sulfate. Concentration in vacuo afforded 6.87 g of a reddish brown oil.
The crude product was chromatographed on a $2.5 \times 75 \mathrm{~cm}$ column of silica gel ($60-200$ mesh) slurry packed in hexane. Fractions of 250 ml were collected: fraction 1, hexane, nil; 2, hexane, 2.83 g of diphenyl sulfide; 3 and 4, hexane, nil; 5,5\% ether-hexane, nil; 6, 10% ether-hexane, nil; 7, 10\% ether-hexane, nil; $8,20 \%$ etherhexane and $9-12,30 \%$ ether-hexane, 928 mg of an unidentified yellow oil; 13 and 14, 30\% ether-hexane, nil; $15,40 \%$ ether-hexane, nil; 16-18, 40% ether-hexane, 569 mg of tetracyclo[4.4.0.1 ${ }^{3,4}, 1^{7.10}$] dodec-8-ene-2,5-dione.

Fractions 16-18 were recrystallized twice from ether-hexane af-
 $\left(\mathrm{CCl}_{4}\right) 1696(\mathrm{C}=\mathrm{O})$ and $1662(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.17$ $(\mathrm{t}, 2, J=1.7 \mathrm{~Hz}$), 3.59-3.36(t, $2, J=1.7 \mathrm{~Hz}), 3.35(\mathrm{~s}, 2), 2.43-$ 1.60 and 2.18 (m and s, 4), and $1.60-1.12(\mathrm{~m}, 2)$; mass spectrum $(70 \mathrm{eV}) \mathrm{m} / \mathrm{e} 188$ (molecular ion), 123, 92.34

Bicyclo[4.1.0]hept-3-ene-2,5-dione (9 or $13, \mathbf{R}=\mathbf{H}$). A saturated solution containing $216 \mathrm{mg}(1.15 \mathrm{mmol})$ of $19, \mathrm{R}=\mathrm{H}$, in methylene chloride was injected onto a glpc column ($0.25 \mathrm{in} . \times 5 \mathrm{ft} 15 \%$ Carbowax $20 \mathrm{M}, 190^{\circ}, 80 \mathrm{~cm}^{3} / \mathrm{min}$ flow) and the effluent oil was collected. This material was sublimed at $80^{\circ}(0.3 \mathrm{~mm})$ affording $84 \mathrm{mg}(60 \%)$ of a pale yellow solid: $\mathrm{mp} 51-52^{\circ}$; ir $\left(\mathrm{CCl}_{4}\right) 1681$ $(\mathrm{C}=\mathrm{O})$ and $1603(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.44(\mathrm{~d}, 2, J=$ $0.7 \mathrm{~Hz}), 2.76-2.41(\mathrm{~m}, 2)$, and $2.00-1.57(\mathrm{~m}, 2)$; mass spectrum (70 eV) m / e (rel intensity) 122 (15) (molecular ion), 94 (6), 68 (6). ${ }^{34}$

Tricyclo[4.4.0. ${ }^{7,10}$]undec-8-ene-2,5-dione Monoethylene Ketal. This compound was synthesized in a similar manner to that reported for its 4-phenyl derivative. ${ }^{14}$ Tricyclo[4.4.0.1 $1^{7,10}$]undec-8-ene-2,5-dione ${ }^{14}$ ($28.7 \mathrm{~g}, 0.16 \mathrm{~mol}$), ethylene glycol ($10.1 \mathrm{~g}, 0.16$ $\mathrm{mol}), p$-toluenesulfonic acid (80 mg), and 380 ml of benzene were refluxed for 5.5 hr with stirring and with water collection in a Dean-Stark trap. The solution was cooled and 2.0 ml of pyridine was added to the stirred solution. The solution was washed with water, dried over magnesium sulfate, and concentrated in vacuo affording $34.1 \mathrm{~g}(95 \%)$ of a yellow liquid. This material was used in the next step without further purification.
Cyclohex-2-ene-1,4-dione Monoethylene Ketal (20). This compound was synthesized in a manner similar to that reported ${ }^{14}$ for its 5 -methyl and 5 -phenyl derivatives. Tricyclo[4.4.0.1 ${ }^{7,10}$]undec8 -ene- 2,5 -dione monoethylene ketal ($34.1 \mathrm{~g}, 0.16 \mathrm{~mol}$) was rapidly distilled twice at 20 mm with the temperature held at 200°. A final distillation afforded a fraction ($6.91 \mathrm{~g}, 29 \%$) consisting of a clear. liquid, bp 141-150 (20 Torr), which was greater than 97% pure by glpc.
The analytical sample was obtained by preparative glpc (0.25 in . $\times 5 \mathrm{ft} 15 \%$ XF1150, $150^{\circ}, 80 \mathrm{~cm}^{3} / \mathrm{min}$ flow): $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 6.47$ and $5.87(\mathrm{q}, 2, J=10.2 \mathrm{~Hz}), 3.96(\mathrm{~s}, 4)$, and $2.67-1.94(\mathrm{~m}, 4)$; mass spectrum (70 eV) m / e (rel intensity) 154 (1) (molecular ion), 126 (18), 110 (5). ${ }^{34}$
Irradiation Apparatus. The photolyses described below were conducted in Pyrex vessel constructed from 6 and 7 cm Pyrex tubing (which formed respectively the inner and outer walls of the vessel).

The vessel was 26 cm in length and had a capacity of $\sim 150 \mathrm{ml}$. The vessel was completely enclosed except for a small side arm on the side near the top (constructed from 1 cm Pyrex tubing) through which the reactants were introduced and at which the entire vessel could be sealed off in vacuo. A regular Hanovia immersion well containing a $550-\mathrm{W}$ medium pressure mercury lamp was placed inside the portion of the vessel constructed from the $6-\mathrm{cm}$ tubing. The entire apparatus was placed in a 3-1. beaker of water which was cooled by means of cold water circulating through a $0.25 \mathrm{in} \times 10 \mathrm{ft}$ copper coil immersed in the beaker.
7,8-Dimethylbicyclo[4.2.0]oct-7-ene-2,5-dione Monoethylene Ketal (24). Cyclohex-2-ene-1,4-dione monoethylene ketal (1.8 g , 11.7 mmol) in 40 ml of 2 -butyne was irradiated for 4 hr in the apparatus described. Distillation of the 2-butyne afforded 2.05 g (97%) of a clear liquid.
The analytical sample was obtained by preparative glpe (10% QF-1, $175^{\circ}, 75 \mathrm{~cm}^{3} / \mathrm{min}$ flow): ir (neat) $1691(\mathrm{C=O}) \mathrm{cm}^{-1}$; pmr $\left(\mathrm{CCl}_{4}\right) 3.93(\mathrm{~s}, 4), 3.05-1.77(\mathrm{~m}, 4)$, and 1.77-1.50(m, 6); mass spectrum (70 eV) m/e 208 (molecular ion), 122, 100. ${ }^{34}$

7,8-Dimethylbicyclo[4.2.0]oct-7-ene-2,5-dione (25b). A solution of $0.50 \mathrm{~g}(2.40 \mathrm{mmol})$ of 24 in 5 ml of dioxane and 5 ml of 3% sulfuric acid was stirred at 25° for 4 hr . The solution was poured into 100 ml of water and extracted with 100 ml of ether. The ether extract was washed twice with 100 ml of 5% sodium bicarbonate solution, dried over magnesium sulfate, and concentrated in vacuo giving 220 mg of a yellow liquid. Glpc analysis showed that this material consisted of a $40: 60$ mixture of $\mathbf{2 5}$ and 24.

7,8-Dimethylbicyclo[4.2.0]oct-7-ene-2,5-dione ($60 \mathrm{mg}, 15 \%$) was isolated as a pale yellow liquid by preparative glpe (10% QF-1, $170^{\circ}, 80 \mathrm{~cm}^{3} / \mathrm{min}$ flow): ir (neat) $1706(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{nmr}$ $\left(\mathrm{CCl}_{4}\right) \delta 3.31(\mathrm{~s}, 2), 2.75-2.45(\mathrm{~m}, 4)$, and $1.66(\mathrm{~s}, 6)$; mass spectrum (70 eV) m/e (real intensity) 164 (10) (molecular ion), 146 (3), 136 (4). ${ }^{34}$

7,8-Dimethylbicyclo[4.2.0]octane-2,5-dione Monoethylene Ketal (26). A solution of 3.00 g (19.4 mmol) of 20 in 100 ml of cis-2-butene was sealed in the photolysis vessel (described above) at 0.4 mm and irradiated for 5.5 hr . Distillation of the excess cis-2-butene afforded $3.90 \mathrm{~g}(96 \%)$ of a colorless liquid. Glpc analysis revealed that starting material was absent and that the product consisted of three components (presumed to be isomers). This material was used without further purification in the next step.
cis-7,8-Dimethylbicyclo[4.2.0]octane-2,5-dione (14b $=14 \mathrm{~S}$ or $14 \mathrm{~A}, \mathbf{R}_{1}=\mathbf{R}_{\mathbf{2}}=\mathrm{CH}_{3}, \mathbf{R}_{3}=\mathrm{H}$) and anti.syn-7,8-dimethylbicy-clo[4.2.0]octane-2,5-dione (14c, $\mathbf{R}_{1}=\mathrm{R}_{\mathbf{3}}=\mathrm{CH}_{3}, \mathrm{R}_{\mathbf{2}}=\mathrm{H}$). A solution of 2.00 g (9.52 mmol) of 7,8 -dimethylbicycio[4.2.0]octane-2,5-dione monoethylene ketal (mixture of isomers from above) dissolved in 18 ml of dioxane and 18 ml of 3% sulfuric acid was stirred at 25° for 3.7 hr . The solution was poured into 100 ml of water and the mixture was extracted twice with ether (100 ml). The ether solution was washed with 5% sodium bicarbonate ($2 \times$ 100 ml) and dried over magnesium sulfate. Concentration in vacuo afforded 940 mg (59%) of a mixture of 39% syn, anti-7,8-dimeth-ylbicyclo[4.2.0]octane-2,5-dione and 61% of the cis-7,8-dimethylbicyclo[4.2.0] octane-2,5-dione as determined by glpc analysis.
The two isomers were separated by preparative glpc ($5 \mathrm{ft} \times 0.25$ in. 20% Hallcomid column, $150^{\circ}, 80 \mathrm{~cm}^{3} / \mathrm{min}$ flow)
syn, anti-7,8-Dimethylbicyclo[4.2.0]octane-2,5-dione has a retention time of 41 min under these conditions and was obtained as a clear liquid which solidified upon standing in the freezer: ir (neat) $1703 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.43-1.91$ and 2.75 (m and $\mathrm{s}, 8$), 1.41-1.14 (m, 3), and 1.14-0.82 (m, 3); mass spectrum (50 eV) m / e calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}, 166.0994$; found, $166.1005 .{ }^{36}$
cis-7,8-Dimethylbicyclo[4.2.0] octane-2,5-dione had a retention time of 48.6 min under these conditions and was obtained as a clear liquid: ir (neat) $1702 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.00-$ D. 56 and 2.78 (m and $\mathrm{s}, 8$) and 1.36-0.79 (m, 6); mass spectrum $(50 \mathrm{eV}) \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}, 166.0994$; found, $166.1010 .{ }^{36}$
cis-7,8-Dimethylbicyclo[4.2.0]octane-2,5-dione $(14 \mathrm{~b}=14 \mathrm{~S}$ or $\left.\mathbf{1 4 A}, \mathbf{R}_{1}=\mathbf{R}_{\mathbf{2}}=\mathbf{C H}_{\mathbf{3}}, \mathbf{R}_{\mathbf{3}}=\mathbf{H}\right)$. A mixture of $61 \mathrm{mg}(0.37 \mathrm{mmol})$ of $\mathbf{2 5}, 18 \mathrm{mg}$ of 10% palladium on charcoal, and 4 ml of methyl alcohol was hydrogenated at 25 psi for 15 min . The mixture was filtered and concentrated in vacuo affording 65 mg of a clear oil which showed both $\mathrm{C}=\mathrm{O}$ and OH bands in the ir. Glpe analysis of the oil showed that it consisted of at least four components.
The pure cis-7,8-dimethylbicyclo[4.2.0]octane-2,5-dione (11.0 $\mathrm{mg}, 18 \%$) was isolated as a colorless liquid by preparative glpc (5 ft
$\times 0.25 \mathrm{in} .15 \%$ Carbowax $20 \mathrm{M}, 150^{\circ}, 80 \mathrm{~cm}^{3} / \mathrm{min}$ flow, $R_{\mathrm{f}}=13.3$ min): ir (neat) $1698 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.54-2.83$ (m, 4), 2.72 ($\mathrm{s}, 4$), and $1.13-0.87(\mathrm{~m}, 6)$; mass spectrum (50 eV) m / e calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}, 166.0994$; found, 166.0994 .36 This isomer yielded 37d immediately upon oxidation. It is believed to be most likely the anti, anti isomer (14A).

7,8-Dichlorobicyclo[4.2.0]octane-2,5-dione Monoethylene Ketal (21). A solution of $3.00 \mathrm{~g}(19.5 \mathrm{mmol})$ of 20 and 120 ml of 1,2 -dichloroethylene (cis and trans mixture) was irradiated in the apparalus described above for 2 hr . Distillation of the excess dichloroethylene afforded $4.75 \mathrm{~g}(97 \%)$ of 7,8 -dichlorobicyclo[4.2.0]oc-tane-2,5-dione monoethylene ketal (22) as an orange-brown oil. This material was used without further purification in the next step: $\mathrm{pmr}\left(\mathrm{CDCl}_{3}\right) \delta 4.84-4.25(\mathrm{~m}, 2), 4.16-3.87(\mathrm{~m}, 4), 3.44-$ $3.26(\mathrm{~m}, 2)$, and 2.74-1.92 (m, 4).

7,8-Dichlorobicyclo[4.2.0]octane-2,5-dione Bisethylene Ketal (22). 7,8-Dichlorobicyclo[4.2.0]octane-2,5-dione monoethylene ketal ($2.51 \mathrm{~g}, 10.0 \mathrm{mmol}$), ethylene glycol ($930 \mathrm{mg}, 15.0 \mathrm{mmol}$), p-toluenesulfonic acid (5 mg), and benzene (25 ml) were refluxed for 5 hr during which time the water formed was collected in a Dean-Stark trap. The solution was cooled and pyridine (0.3 ml) was added with stirring. Water (200 ml) was added and the mixture was extracted with ether. The extract was washed with water and dried over magnesium sulfate. Concentration in vacuo afforded 2.56 g (87%) of 22 as an orange-red oil. This material was used without further purification in the next step: pmr $\left(\mathrm{CDCl}_{3}\right) \delta$ 4.73-4.29 (m, 2), 4.11-3.73 (m, 8), 3.04-2.91 (m, 2), and 2.071.46 (m, 4); mass spectrum (70 eV) m/e (real intensity) 261 (1), 259 (3).
Bicyclo[4.2.0]octane-2,5-dione Bisethylene Ketal (23). A suspension of 0.64 g (92 mg -atom) of finely chopped lithium wire in 20 ml of tetrahydrofuran was added to a stirred solution of $2.56 \mathrm{~g}(8.7$ mmol) of 22 and 4.25 g (57.4 mmol) of tert-butyl alcohol in 45 ml of dry tetrahydrofuran (dried over molecular seives). The reaction mixture was stirred for 30 min during which time slight warming occurred and the color turned to brown. The reaction mixture was refluxed for 2 hr and then stirred at 25° for 2 hr . The reaction mixture was decanted from the excess lithium into 50 ml of methyl alcohol, and ice was slowly added to the solution after the hydrogen evolution had ceased. The product was extracted with ether, and the extracl was washed with water and dried over magnesium sulfate. Concentration in vacuo afforded 1.26 g of a yellow brown oil.

Crystallization from ethyl ether at -77° afforded 850 mg (43%) of a white solid: $\mathrm{mp} 45-46^{\circ} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.90(\mathrm{~s}, 8), 2.76-2.35$ ($\mathrm{m}, 2$), and 2.13-1.46 ($\mathrm{m}, 8$); mass spectrum (70 eV) m/e (rel intensity) 226 (3), 181 (8), and 183 (9). ${ }^{34}$

Bicyclo[4.2.0]octane-2,5-dione (14a, $\mathbf{R}_{1}=\mathbf{R}_{\mathbf{2}}=\mathbf{R}_{\mathbf{3}}=\mathrm{H}$). A solution of $0.7 \mathrm{~g}(3.10 \mathrm{mmol})$ of 23 in 8 ml of dioxane and 6 ml of 3% sulfuric acid was stirred at room temperature for 3.5 hr . The reaction mixture was poured into 100 ml of water and extracted with ether ($3 \times 50 \mathrm{ml}$). The ether extract was washed with 5% sodium bicarbonate ($2 \times 50 \mathrm{ml}$) and water ($2 \times 50 \mathrm{ml}$) and dried over magnesium sulfate. Concentration in vacuo afforded 1717 mg of a yellow oil. Bicyclo[4.2.0]octane-2,5-dione ($6.0 \mathrm{mg}, 1.4 \%$) was isolated from this crude mixture as a colorless liquid by preparative glpc ($5 \mathrm{ft} \times 0.25 \mathrm{in} .15 \%$ Carbowax $20 \mathrm{M}, 175^{\circ}, 80 \mathrm{~cm}^{3} / \mathrm{min}$ flow, $R_{\mathrm{t}}=4.8 \mathrm{~min}$): mass spectrum (50 eV) calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$, 138.0681 ; found, 138.0686 .

Bicyclo[4.2.0]oct-7-ene-2,5-dione (25a). To a filtered solution of sodium naphthalide prepared by stirring $3.3 \mathrm{~g}(144 \mathrm{mmol})$ of sodium with $17.5 \mathrm{~g}(137 \mathrm{mmol})$ of naphthalene for 28 hr in 450 ml of DME under nitrogen was added $3.1 \mathrm{~g}(10.5 \mathrm{mmol})$ of 22 in 50 ml of DME over a $2-\mathrm{hr}$ period. The solution was stirred an additional 45 min before flushing with oxygen unlil the solution became orange. The solvent was removed under reduced pressure to give a red solid from which the bisethylene ketal of $\mathbf{2 5 a}$ could be isolated by chromatography on silica gel and vacuum distillation (bp 113°, 1.2 Torr).

The crude dehalogenated product was dissolved in 500 ml of elher and stirred with 500 ml of 3 N hydrochloric acid under nitrogen for 1.5 hr at 25°. The aqueous layer was extracted with ether, and the combined ethereal solutions were washed with saturated aqueous sodium bicarbonate and dried $\left(\mathrm{MgSO}_{4}\right)$. Distillation of the ether under reduced pressure gave a yellow solid which was dissolved in ethyl acetate (5\%)-benzene (95\%) and chromatographed on silica gel. Naphthalene was eluted with pentane. The
desired product, contaminated with polymeric material, was eluted with ethyl acetate (5%)-benzene (95%). The solvent was removed and 300 mg of $\mathbf{2 5 a}(21 \%)$ was obtained by dissolving the residue in a minimum amount of carbon tetrachloride, pouring into 200 ml of pentane, and filtering to remove the insoluble material.

Purification by glpc (5% Carbowax column at 150°) gave material with: ir (neat) $1713,1309,1268,1174,818,762,682 \mathrm{~cm}^{-1}$; $\mathrm{pmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.36(\mathrm{~s}, 2), 3.82(\mathrm{~s}, 2), 2.32-3.32(\mathrm{~m}, 4)$; mass spectrum (MS-902) 136.0524, calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} 136.0524$.

7,8-Dimethyl-3,4-benzobicyclo[4.2.0]octa-3,7-diene-2,5-dione (precursor to 46a). Sublimed naphthoquinone (3.16 g) and 2-butyne $(6.2 \mathrm{ml})$ were dissolved in 250 ml of benzene in a Vycor flask equipped with a cooling coil, magnetic stirrer, and septum. The solution was irradiated for 44 hr with a $275-\mathrm{W}$ sunlamp. Removal of the benzene under vacuum left a solid which was eluted from a silica gel column by ethyl acetate (5%)- CCl_{4} (95%) to give 5% of material with $\mathrm{mp} \mathrm{l16-117}^{\circ}$ after sublimation (0.04 Torr), lit. ${ }^{37} \mathrm{mp}$ 120-121 ${ }^{\circ}: \operatorname{pmr}\left(\mathrm{CDCl}_{3}\right) \delta 8.16-7.55(\mathrm{~m}, 4) 3.82(\mathrm{~m}, 2), 1.66(\mathrm{~d}$, $6, J=1.5 \mathrm{~Hz}$); mass spectrum (70 eV) gave the parent ion at m / e 212.

Other Reagents. 7,8-Diphenyl-3,4-benzobicyclo[4.2.0]octa-3,7-diene-2,5-dione ${ }^{38}$ (precursor to 46b), 1-methoxy-7,8-diphenyl-3,4-benzobicyclo[4.2.0]octa-3,7-diene-2,5-dione, and 1-methoxy-8-phenyl-3,4-benzobicyclo[4.2.0]octa-3,7-diene-2,5-dione were kindly supplied by Professor Pappas. ${ }^{29}$ 1,3,4,6-Tetramethylbicy-clo[4.1.0]hept-3-ene-2,5-dione ${ }^{39}$ (precursor to 27d) and 1,3-di-lert-butylbicyclo[4.1.0]hept-3-ene-2,5-dione ${ }^{40}$ (precursor to 27e) were prepared according to the literature. 3,7,7-Trimethylbicyclo[4.1.0] hept-3-ene-2,5-dione ${ }^{7}$ and eucarvone (precursors to 27f) have been described ${ }^{9}$ as have been 6,6-dimethylcyclohept-2-ene-1,4-dione (precursor to 27i), ${ }^{9} 3,4$-benzobicyclo[4.1.0]hept-3-en-2one, and 2,3-benzocyclohepta-2,4-dienone (precursors to 27j). ${ }^{9}$ $4,7,7-$ Trideuterioeucarvone ${ }^{41}$ (precursor to 27 g) was prepared by reaction of eucarvone with sodium methoxide in $\mathrm{CH}_{3} \mathrm{OD}$ at 25° for 24 hr : $\mathrm{pmr}\left(\mathrm{CCl}_{4}\right) \delta 6.35($ broad s, 1$), 5.9($ broad s, 1$), 1.9(\mathrm{~d}$, 3), $1.1(\mathrm{~s}, 6)$, mass spectrum (70 eV) $\mathrm{m} / \mathrm{e} 153$ (parent ion), 138 , 128, 110, 93. Oxidation in DMSO- d_{6} yielded 27g. 1,1,4-Trimeth-ylcyclohepta-2,4-dien-6-one was prepared according to the literature. ${ }^{42}$ Material purified by glpe (15% QF-1) column at 150° had $\mathrm{pmr}\left(\mathrm{CCl}_{4}\right) \delta 1.09(\mathrm{~s}, 6), 2.0(\mathrm{~d}, 3, J=1.5 \mathrm{~Hz}), 2.48(\mathrm{~s}, 2 \mathrm{H})$, $5.5 \times 6.1(\mathrm{~m}, 3)$. The photodimer of 2,3-dimethyl-p-benzoquinone was prepared according to the literature,,$^{43} \mathrm{mp} 162-163^{\circ}$.

References and Notes

(1) Application of Electron Spin Resonance Spectroscopy to Studies of Valence Insomerization. III. Work supported by by grants from the National Science Foundation and the Army Research Office (Durham).
(2) National Institutes of Health Postdoctoral Fellow, 1970-1971.
(3) National Defense Education Act Fellow, 1970-1972.
(4) (a) E. J. Corey, H. Burke, and W. A. Remers, J. Amer. Chem. Soc., 77, 4941 (1955); (b) F. A. L. Anet, ibid., 86, 458 (1964); (c) F. R. Jensen and L. A. Smith, ibid., 86, 956 (1964).
(5) E. Vogel, H. Kiefer, and W. R. Roth, Angew. Chem., Int. Ed. Engl., 3, 442 (1964).
(6) A. C. Cope, A. C. Haven, Jr., F. L. Ramp, and E. R. Trumbull, J. Amer. Chem. Soc., 74, 4867 (1952).
(7) E. J. Corey and H. J. Burke, J. Amer. Chem. Soc.. 78. 174 (1956).
(8) G. A. Russell, T. Ku, and J. Lokensgard, J. Amer. Chem. Soc., 92, 3833 (1970).
(9) G. A. Russell, R. L. Blankespoor, J. Mattox, P. R. Whittle, D. Symalla, and J. R. Dodd, J. Amer. Chem. Soc., 96, 7249 (1974).
(10) G. A. Russell and E. T. Strom, J. Amer. Chem. Soc., 86, 744 (1964).
(11) G. A. Russell and R. L. Blankespoor, Tetrahedron, 4573 (1971).
(12) W. Albrecht, Justus Liebigs Ann. Chem., 348, 31 (1906).
(13) G. A. Russell, E. R. Talaty, and R. H. Horrocks, J. Org. Chem., 32, 353 (1967).
(14) D. D. Chapman, W. J. Musliner, and J. W. Gates. Jr., J. Chem. Soc. C, 124 (1969).
(15) Diones 28 and 29 were kindly supplied by Professor E. Voget. For a somewhat different interpretation of the esr spectra of 28B, see F. Gerson, K. Müllen, and E. Vogel, Helv. Chim. Acta, 45, 1046 (1971).
(16) A. D. McLachlan, Mol. Phys., 3, 233 (1960).
(17) G. A. Russell, J. J. McDonnell, P. R. Whittle, R. S. Givens, and R. G. Keske. J. Amer. Chem. Soc., 93, 1452 (1971).
(18) G. A. Russell and P. R. Whittle, J. Amer. Chem. Soc., 89, 6781 (1967).
(19) J. A. Pople, D. L. Beveridge. and P. A. Dobosh, J. Chem. Phys., 47, 2026 (1967).
(20) G. A. Russell and K.-Y. Chang, J. Amer. Chem. Soc., 87, 4381 (1965).
(21) G. A. Russell, G. W. Holland, K.-Y. Chang, R. G. Keske, John Mattox, C. S. C. Chung, K. Stanly, K. Schmitt, R. L. Blankespoor, and Y. Kosugi, J. Amer. Chem. Soc., 96, 7237 (1974).
(22) R. C. Cookson, D. A. Cox, and J. Hudee, J. Chem. Soc., 4499 (1961).
(23) S. F. Nelsen and B. M. Trost, Tetrahedron Lett., 5737 (1966), observed
the facile oxidations of the 2,5 -semidione derived from the cyclopenta-diene-p-benzosemiquinone Diels-Alder adduct to yield the corresponding p-benzosemiquinone.
(24) R. D. Rieke and W. E. Rich, J. Amer. Chem. Soc., 92, 7349 (1970)
(25) A. Streitweiser, Jr., G. R. Ziegler, P. C. Mowery, A. Lewis, and R. G. Lawler, J. Amer. Chem. Soc., 90, 1357 (1968).
(26) N. L. Bauld, F. R. Farr, and C. E. Hudson, J. Amer. Chem. Soc., 96, 5634 (1974).
(27) J. Gendell, J. H. Freed, and G. K. Fraenkel, J. Chem. Phys., 37, 2832 (1962); B. Uenkataraman, B. G. Segal, and G. K. Fraenkel, ibid., 30, 1006 (1959).
(28) R. W. Brandon and E. A. C. Lucken, J. Chem. Soc., 4273 (1961)
(29) Kindly supplied by Professor S. P. Pappas; see S. P. Pappas, B. C. Pappas, and N. A. portnoy, J. Org. Chem., 34, 520 (1969).
(30) Other examples wherein strained semidiones take on two hydrogen atoms to relieve the strain are bicyclo[2.1.0] pentanesemidione and derivatives ${ }^{18}$ as well as bicyclo[2.2.0] hexanesemidione ${ }^{18}$ and derivatives. ${ }^{31}$
(31) G. A. Russell, P. R. Whittle, R. G. Keske, G. Holland, and C. Aubuchon, J. Amer. Chem. Soc., 94, 1693 (1972).
(32) G. A. Russell, E. G. Janzen, and E. T. Strom, J. Amer. Chem. Soc., 86, 1807 (1964)
(33) E. J. Corey and M. Jautelat, J. Amer. Chem. Soc.. 89, 3912 (1967).
(34) Discrepancies between experimental and calculated elemental analyses were $\% \mathrm{C}<0.25 \%, \% \mathrm{H}<0.19 \%$.
(35) V. Franzen, H. Schmidt, and C. Mertz, Chem. Ber., 94, 2942 (1961).
(36) High resolution mass spectra were furnished by Dr. R. L. Foltz, Battelle's Columbus Laboratories' High Resolution Mass Spectrometry Center supported by National Institutes of Health, Contract No. NIH-712483.
(37) S. Farid, W. Kothe, and G. Pfundt, Tetrahedron Lett., 4147 (1968).
(38) S. P. Pappas and N. A. Portnoy, J. Org. Chem., 33, 2200 (1968).
(39) W. C. Howell, M. Ktenas, and J. M. McDonald, Tetrahedron Lett., 1719 (1964).
(40) W. Rundel and P. Kastner, Tetrahedron Lett., 3947 (1965).
(41) E. J. Corey, H. J. Burke, and W. A. Remers, J. Amer. Chem. Soc., 78, 180 (1956).
(42) M. S. Carson, W. Cocker, D. H. Grayson, and P. V. R. Shannon, J. Chem. Soc., C, 2220 (1969).
(43) R. C. Cookson, D. A. Cox, and J. Hudec. J. Chem. Soc., 4499 (1961)

A New Ring System. 2,6-Dioxabicyclo[2.2.2]octane, a Highly Reactive Bicyclic Acetal

H. K. Hall, Jr.,* L. J. Carr, R. Kellman, and F. De Blauwe
Contribution from the Department of Chemistry, University of Arizona, Tucson, Arizona 85721. Received January 7, 1974

Abstract

A convenient synthesis of 2,6-dioxabicyclo[2.2.2]octane (3), the parent compound of a new ring system, has been worked out. This bicyclic acetal is highly reactive, oligomerizing in the solid phase at room temperature and hydrolyzing several orders of magnitude faster than related model compounds. Lewis and proton acids readily polymerized $\mathbf{3}$ to the 1,4-pyranose homopolymer 4, $\eta_{\text {inh }} 0.13-1$.1. Stereoregular propagation by SN 2 displacement on the bicyclic oxonium ion occurred at low temperatures using fluro acids as initiators. Stereorandom propagation by SN 1 reaction of an intermediate carbonium ion was observed at $+28^{\circ}$ with methanesulfonic or trifluoroacetic acid initiation. The stereochemistries of the polymers obtained under these conditions agreed well with those calculated from conformational considerations for the limiting cases.

The understanding and chemical synthesis of polysaccharides are of great biomedical interest. ${ }^{1}$ The synthesis of stereoregular polysaccharides has been a subject of vigorous study in our laboratories and elsewhere. A stereoregular substituted polysaccharide from 1,6 -anhydro-2,3,4-tri-O-methyl- β-D-glucopyranose was initially reported by Korshak ${ }^{2}$ and Schuerch. ${ }^{3}$ Later work by Schuerch and coworkers reported other substituted polysaccharides. ${ }^{3}$ Most recently, attention has turned toward the synthesis of polysaccharide analogs via ring-opening polymerization of unsubstituted bicyclic acetals. Specifically, the cationic ringopening polymerization of 6,8-dioxabicyclo[3.2.1]octane (6,8 -DBO) (1) has been shown to proceed at low temperatures via a direct displacement-type propagation step to give a completely stereoregular 1,3 -linked tetrahydropyranoside $2 .{ }^{4-6}$ We now report the synthesis and ring-opening polymerization of 2,6-dioxabicyclo[2.2.2]octane (3) to give the 1,4 -linked analog 4 .

8-DBO

2, 6-DBO

4

Results

Synthesis. The synthesis of $\mathbf{3}$ was achieved as described in Scheme I. The synthesis of the required intermediate 6 paralleled that used by earlier workers ${ }^{7,8}$ to prepare the analogous diethyl acetal. Michael addition of sodio dimethyl malonate to acrolein with subsequent acetalization in situ gave 5 in 50% yield. Reduction of 5 with lithium aluminum hydride gave a high yield of $\mathbf{6}$. The diol acetal, $\mathbf{6}$, underwent

6
intramolecular acid-catalyzed acetal exchange in dilute chloroform solution to afford the camphoraceous bicyclic acetal 3 in up to 35% yield. The monomer proved to be hygroscopic and unstable toward oligomerization under ordinary conditions and had to be stored under nitrogen at Dry Ice temperatures.

